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Effects on a van located at 9 meters from the charge




1 Introduction

Experimental evidences show that aqueous foam mitigate

significantly the pressure loading produced by the detonation of

high explosives

e Aim: Design of a numerical tool for the simulation of

propagation of shock waves in aqueous foam

e Aqueous Foams: From the fluid dynamic point of view aqueous

foams are a two phase medium containing water and air

e Physical model for simulation: Multi-Phase model with

kinematic and thermal disequilibrium




2 Geometry
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Figure 1: For each zone an appropriate model




3 Numerical Features

e Finite Volume Method
e Upwinding through Characteristic Fluxes
e 3D flows with spherical symmetry
e 2nd order (MUSCL), Time implicit
Some specific difficulties:
e Stiff source terms
e Non conservative terms for the two fluid models
e Very strong gradients

e Real Equation of State for Water and Steam in a very large

range




4 Physical Models

4.1 The gaseous phase

The volume fractions oy, o, et «,, satisfy:
as +ay, + oy =1

At one atmosphere and temperature of the room:
e a; =0, a,=1/fand a, =1—-1/f

e f > 1 is called the expansion ratio of the foam



Denoting by «, the gaseous volume fraction, by p, the density of
the gas and by e, its specific internal energy, we have:
Qg g + Qg ,
QgPg QsPs + Qg Pq

QgPg€q AgPs€s T AgPaCq -

Mass conservation of each gas and balance of momentum and total

energy for the gaseous phase lead to:

(Oésps)t + v ’ (aspsug) Qsa
(Qapa)t + V- (Qapatiy)

(agpgug)e +V - (agpgug @ ug) + agVp
(agpgEg), +V - (agpgHgug) + plag):

— Qs (hzs +




Air and steam have their own Equations of State (E.0.S.):

p:Pk(pkyek)a T:Tk(pkaek)v kE{CL,S},

and one can show that the pressure p is in fact a function of 3

parameters: pg, e, and




4.2 The liquid phase

Mass conservation of water and balance of momentum and total

energy for the liquid phase lead to:
(awpw)t ‘|‘ v ’ (Oéw,Owa) _Qsa
(QwPwlw)t + V- (Qy oyl @ Uyy) + 0y VD
_Qs U; + Cdrag (ug — uw) ’

(OéwpwEw)t + v ’ (OéwaHwa) + p(aw)t Qz’w

Ju;|?

Carag (g
The liquid has also its own E.o.S.:

p=Ppuwsew), T =T"(pw, ew)-

— Uy ) * Uy -




4.3 Closure relations

Mechanical closures The expression for the coefficient of the

drag force, £Cgpqq(uyw — uy) is classical:

— 0 ¢~ Qg PwPg
Cdrag — Up— ‘ug -

Uy |
r p

where p = « + o and 0, is a non dimensional number
gPg w Pw p

depending only on ay,, a4, py, and py.

Concerning u;, the interfacial velocity, several choices are possible,

the more classical being:

Uj = QglUg + QU -




Thermodynamical closures: the case without phase change
In this case

QSZO,

so we have to give ();s et (Q;,,. We have taken:

Qz‘s — Q(Tg — Tw) ) Qz’w — Q( w Tg) )

A w Pw 1 w _%
Q = Cwp ) Rmean :RO (p—) )

Oégpg T Aoy Pw Rgnean pzou

A=0.03308T WEKm™', p2=1kgm™>, 10°m< Ry <10 %m.




Thermodynamical closures: the case with phase change
In this case conservation of the total energy of the system (3 fluids)

leads to:

Qs(his — hiw) + Qis + Qiw = 0.

Following classical modeling in Thermohydraulics, we take:

Qis — wis(his - hs) ; in — wiw(hiw — hw) ’

where w;s and wj,, are interfacial liquid-vapor heat exchange
coefficients. We choose to express these terms as functions of
relaxation times. They take into account the fact that the

liquid-vapor phase change is not instantaneous:

A gy Ps g Ay P
Wis = ; Wiw = ’
Tis Tiw




with the relaxation times 7,5 = T;, = 1073 s.

Finally, in case of phase change :
his — hsa,t,s ) hiw — hsa,t,w )

where hgqt s and hgqt q, are given in using the saturation curve of
the equations of state.
Hence we find

. Qis + in
hz's - hiw .

Qs:




5 Equations of State

Air The usual perfect gas laws are used:

p= Pa(pa,ea) = (%L - 1) Pa€a, 1 = Ta<paa€a) =

Steam and Water The International Association for the
Properties of Water and Steam-IAPWS tables are used. They have
been implemented as a Library (Freesteam) by John Pye and can

be downloaded on sourceforge.

We have developed for our present purpose a new implementation,

Quicksteam, designed for fluid flow simulation.




6 Numerical Method

We present the method for the discretization of the multi-phase
system in the cartesian 1D case.

~

vy + F(0)y + C(v)vg + D(v)v, = S(v),

where d = agp, — Q5P

[0

QgPg




We observe that the matrix I'd + D(v) is invertible and therefore we
can rewrite our system as:

v + F(v)e + C(v) v, = S(v),

and after spatial integration we get:

ntl _

on | ot
i i Id+ E() F(v), de dt —
A, AmAL /t /m[ + B F(v). du

(%

1
= AvAL /K S(v(x,t))dzdt,

where the matrix F(v) satisfies




v + F(v), + C(v) v, = S(v)

The scheme reads:

n

ntl _ o

(%

7 1 1 n n . on+1 n+1
Atn + A (Id+E(U’L )) ('F(/’Li_|_%7v 7v1',—|—1

F(M?_l;vn—l—l vn-l—l)) . S(Un Un—l—l) _ 0,

)

1—1 e 1Y

Az v + Axip1v]Y
Hits Ax; + Az

F(v) + F(w) ~

— Sign(A(p))




7 Numerical Results




Test on Euler Equation



- Explicit scheme - Implicit scheme

Euler's equations : validation with an analytical solution - Space discretization error on

v=(\rho,\rho u,\rho E) computed with the discrete L"2 -norm at the final time
t=0.2\,s andfor d=1, 2, 3.
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Euler's equations : a shock tube problem - Numerical results obtained with the explicit

FVCF scheme ( N=500 and CFL=0.9 )for d=1, 2, 3 at t=0.2\;s .
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Euler's equations : a shock tube problem - Density profiles for several values of the
Courant number CFL and for a dimension parameter d successively equal to
1 (top left), 2 (topright),and 3 (bottom).
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Euler's equations: spherically symmetric blast wave in air - The vertical lines represent
the boundaries of the control volumes of the 1D mesh.



Time [ms] 0.05 0.15 0.35 0.5 1. 2. 3.
Distance (real) [m] 0.2 0.4 0.6 0.75 1.05 1.55 1.95
Distance (simulation) [m] 0.195 0.394 0.628 0.751 1.074 1.567 2.009

Table 1: Euler’s equations: spherically symmetric blast wave in air

- Shock front distance from the charge center at different times.




Test on Ransom’s faucet flow
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Ransom's faucet test case - Numerical solutions for d=1 at different times( s ).



LY
\
0.8 0.6 \\//—
0.6 Wmewag, 30.4 I s
63’ r //\ --------- & -'-v..AN’,
0.4} // 0.2
030 12 14 1{; 18 20 22 Yo 2 12 1{5 18 20 22
r(m) r(m)
—t=02 t=06 t=1 —t=02 t=06 t=1
---t =04 t=0.8 =2 ---t =04 t=0.8 =2
4 .20
7 T
w v
T e Sl e 515
| camaEme—— 3
=) i S
-.’-""f:
2912 14 1%; 18 20 22 Q0 12 14 1%3 18 20 22
r(m) r(m)
—_—t = 0.2 t=0.6 p=q —_—t = 0.2 t=0.6 b=
---t=0.4 t=0.8 t =2 ---t =04 t=0.8 =2

Ransom's faucet test case - Numerical solutions for d=3 at different times( s ).
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Ransom's faucet test case - Grid dependency for d=1
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Ransom's faucet test case - Grid dependency for d=3



Test on change of phase
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Time evolution of a water-air state (T_g,p) towards the liquid-vapor equilibrium when
using the analytical thermodynamic ( d=1 ).
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Time evolution of a water-air state (T_g,p) towards the liquid-vapor equilibrium when
using the Quicksteam software ( d=1 ).



Pressure attenuation due to the
presence of foam
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Foam blast surpression test: time evolution of the pressure p at r=2L/3 , without
evaporation (WE) and with evaporation (E).
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Foam blast surpression test: overpressure reduction in agueous foam of different expansion ratio.



Detonation model
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